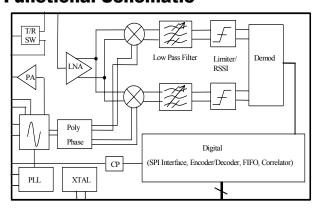
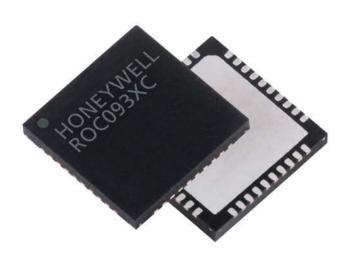


Advance Information

Radio On A Chip 860-928 MHz Frequency Agile With SPI Bus Interface


Features

- High Integration Minimizes System Cost
- Data Rates from 4 to 128.8 Kbits/Sec
- Direct Connection To Microprocessor
- Integrated Antenna Switch
- Adjustable detection bandwidths, data rates
- Adjustable gain, detection level/ hysterisis
- Low and high beta FSK detection modes
- Integrated Manchester coding/decoding
- 6 Prog. Power Levels, Freq. And Tx/Rx/Standby Modes
- Operates From Single 2.5V Power Supply
- Surface Mount Leadless Plastic Packaging


Description

The Honeywell HRF-ROC093XC is a half-duplex transceiver for use in wireless communication and data applications. Direct microprocessor connection for control and data transfer, eliminate the need for additional ICs, while integrated data encode/decode reduces the instruction set requirements on the microprocessor. The HRF-ROC093XC is ideally suited for use in battery powered wireless applications in conjunction with microprocessors for voice and data communication. Adjustable data rates, filter bandwidths and detection levels allow the IC to be used in a wide variety of high sensitivity / high EMI environments.

Functional Schematic

Product Photo

HRF-ROC093XC Wireless Transceiver

Web Site: www.mysoiservices.com Email: mysoiservices@honeywell.com

2003 09325XC Published June 2003 Page 1

Honeywell Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295

Advance Information

RF Electrical Specifications @ + 25°C

Parameter	Test Condition	Frequency	Minimum	Typical	Maximum	Units
Rx Sensitivity		860– 928 MHz		-95		dBm
1db Compression	Vdd = 2.5V	860– 928 MHz		+5		dBm
Tx Output Power	Vdd = 2.5V	860– 928 MHz		+3		dBm
Tx Power Control				18		dB
Data Rate, Tx / Rx	Continuous Data			128		Kbps
Channel Rejection	Adjacent Channels	Fc + 1MHz		50		dB
Max Detection BW	IQ Baseband FilterPassband			250		KHz
Control/Data I/O	Serial Peripheral Interface (SPI). Direct			10		MHz
	Connection To Microcontroller/Microprocessor					

DC Electrical Specifications @ + 25°C

<u> </u>					
Parameter	Minimum	Typical	Maximum	Units	
V _{DD} Power Supply Voltage	2.4	2.5	2.6	V	
Power Supply Current During Tx, Output Power	16	26		mA	
Dependant (915 MHz)					
Power Supply Current (I _{DD}) During Rx (915MHz)		35		mA	
Sleep Mode Current Consumption		<1		uA	
CMOS Logic Level (0)	0		0.7	V	
CMOS Logic Level (1)	1.7		V_{DD}	V	

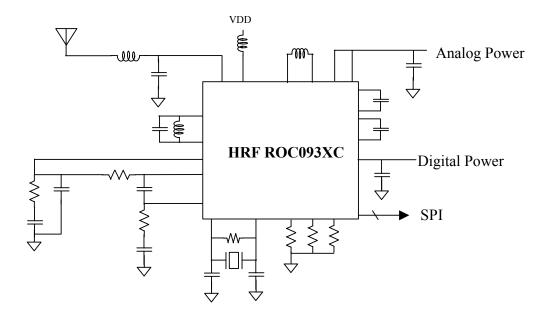
Absolute Maximum Ratings¹

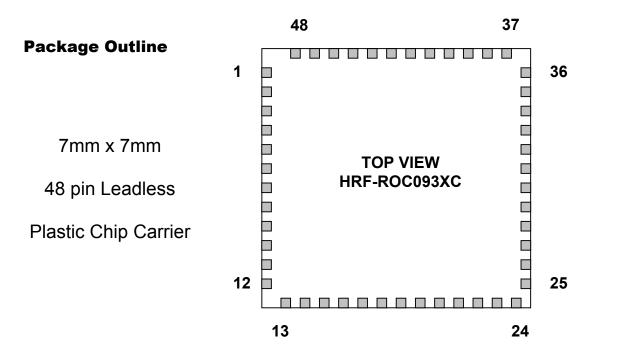
Parameter	Absolute Maximum	Units
Maximum Input Power	-	-
V_{DD}	+ 2.8	V
ESD Voltage (Human Body Model)	200	V
Operating Temperature	- 40 to + 85	Degrees C
Storage Temperature	- 40 to + 150	Degrees C

(Note 1) Operation Of The HRF-ROC093XC Beyond Any Of These Parameters May Cause Permanent Damage.

ESD Protection: The HRF-ROC093XC Contains reduced ESD Protection Circuitry for sensitive RF I/O. Precautions Should Be Taken During Handling/Assembly Until Protected By External Circuitry or Housings

Web Site: www.mysoiservices.com
Email: mysoiservices@honeywell.com


2003 09325XC


Published June 2003 Page 2

Advance Information

Typical Application

Low inductance RF/DC ground connection required below part as bottom ground pad is used for all device grounding. Additionally, this connection prodvides a direct connection to the die for enhanced thermal dissipation. *Package shown not to scale*.

Web Site: www.mysoiservices.com Email: mysoiservices@honeywell.com

Published June 2003 Page 3

2003 09325XC

Advance Information

Pin Configuration

HRF-ROC093XC 48 Pin LPCC[™] (7 mm X 7 mm) Package Pin List * RF/Digital ground is provided through backside slug pad.

Pin	Name	Function	Pin	Name	Function
1	SWITCH TX	Optional connection – PA AC OUT to SWITCH ANTENNA	25	SPI CLK IN	SPI Clock
2	PA AC OUT	AC-coupled PA output – 10 pf series cap	26	SPI SSN IN	SPI Slave Select
3	VP PA	Positive supply for PA	27	DIG DATA IN	Digital Section Rx Text Input, Ext. digital data
4	PA DC OUT	PA Direct Connection for output bias	28	SPI DATA IN	SPI Serial Data input
5	VCO TANK2	VCO external tank connection	29	RESET N	Digital Section Reset
6	VCO TANK1	VCO external tank connection	30	MIXER REF	Mixer Ref Voltage Filter
7	VP VCO	Positive supply for VCO	31	SCHM TRIG LEV	Detection level monitor/filtering
8	VMOD LG	VCO varactor input, high deviation	32	PRE TRIG DATA	RX Analog Data, predetection
9	VMOD SM	VCO varactor input, low deviation	33	V CM REF	Common mode voltage filtering
10	TX MOD DATA	Data charge pump output	34	VP BB	Positive supply for Baseband Filter
11	VP PLL	Positive supply for PLL	35	Q FILT BW N	BB Filter BW Control
12	REXT PLL	PLL bais resistor	36	Q FILT BW P	BB Filter BW Control
13	PD OUT	Phase Detector charge pump output	37	I FILT BW N	BB Filter BW Control
14	CRYSTAL 1	Reference crystal	38	I FILT BW P	BB Filter BW Control
15	CRYSTAL 2	Reference crystal	39	Q MIX ADJ	Dynamic Range Adjust
16	RTEST OUT	PLL R-counter out	40	I MIX ADJ	Dynamic Range Adjust
17	PTEST OUT	PLL N-counter output	41	VP MIX	Positive supply for Mixer
18	SQUELCH 1	Bit 1, 4-level window Select	42	VP LNA	Positive supply for LNA
19	SQUELCH 2	Bit 1, 4-level window Select	43	RF GAIN	LNA Gain Control: open – low, ground – high
20	VP DIG	Positive supply for DIG	44	VP LNA	Positive supply for LNA
21	RX OUT	Demodulated Rx data	45	LNA INPUT	LNA input
22	TX DATA V	Logic level Tx data	46	LNA BIAS ADJ	DC Bias Resistor
23	SPI INT OUT	SPI Interrupt output	47	SWITCH RX	Optional connection – LNA INPUT to SWITCH ANTENNA
24	SPI DATA OUT	SPI Serial Data output	48	SW ANTENNA	Switch connection to Antenna

Web Site: www.mysoiservices.com Email: mysoiservices@honeywell.com

2003 09325XC Published June 2003 Page 4

Advance Information

Customer Demonstration Board

The Customer Demonstration Board provides the ROC093XC radio with a PIC microcontroller that interfaces to a PC through a USB connection. Using the software provided and a PC, the user can send files and perform range tests. For a more complete understanding of the operation of the radio, the user can also control the operating frequency, power levels and all internal registers for early product development/prototyping. The board operates from a USB power source, three "AA" batteries or an external power supply. Single antenna operation is attained through the internal RF switch. Separate Tx/Rx/ ports are also available.

A kit is available, HRF-ROC093XC-K, which includes two boards, antennas, USB cable, documentation and control software.

Ordering Information

Ordering Number	Product		
HRF-ROC093XC -T	Delivered On Tape And Reel ²		
HRF-ROC093XC -K	Engineering Evaluation Kit		
Note O. Ocatest Henry well for details			

Note 2: Contact Honeywell for details

Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Web Site: www.mysoiservices.com
Email: mysoiservices@honeywell.com

2003 09325XC Published June 2003 Page 5

Honeywell Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295